Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 27(1): e14336, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38073071

RESUMO

Biodiversity-ecosystem functioning (BEF) research has provided strong evidence and mechanistic underpinnings to support positive effects of biodiversity on ecosystem functioning, from single to multiple functions. This research has provided knowledge gained mainly at the local alpha scale (i.e. within ecosystems), but the increasing homogenization of landscapes in the Anthropocene has raised the potential that declining biodiversity at the beta (across ecosystems) and gamma scales is likely to also impact ecosystem functioning. Drawing on biodiversity theory, we propose a new statistical framework based on Hill-Chao numbers. The framework allows decomposition of multifunctionality at gamma scales into alpha and beta components, a critical but hitherto missing tool in BEF research; it also allows weighting of individual ecosystem functions. Through the proposed decomposition, new BEF results for beta and gamma scales are discovered. Our novel approach is applicable across ecosystems and connects local- and landscape-scale BEF assessments from experiments to natural settings.


Assuntos
Biodiversidade , Ecossistema
2.
New Phytol ; 241(5): 1910-1921, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38124274

RESUMO

By modifying the biotic and abiotic properties of the soil, plants create soil legacies that can affect vegetation dynamics through plant-soil feedbacks (PSF). PSF are generally attributed to reciprocal effects of plants and soil biota, but these interactions can also drive changes in the identity, diversity and abundance of soil metabolites, leading to more or less persistent soil chemical legacies whose role in mediating PSF has rarely been considered. These chemical legacies may interact with microbial or nutrient legacies to affect species coexistence. Given the ecological importance of chemical interactions between plants and other organisms, a better understanding of soil chemical legacies is needed in community ecology. In this Viewpoint, we aim to: highlight the importance of belowground chemical interactions for PSF; define and integrate soil chemical legacies into PSF research by clarifying how the soil metabolome can contribute to PSF; discuss how functional traits can help predict these plant-soil interactions; propose an experimental approach to quantify plant responses to the soil solution metabolome; and describe a testable framework relying on root economics and seed dispersal traits to predict how plant species affect the soil metabolome and how they could respond to soil chemical legacies.


Assuntos
Plantas , Solo , Solo/química , Retroalimentação , Plantas/metabolismo , Microbiologia do Solo , Biota
3.
Sci Adv ; 9(40): eadi2362, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801499

RESUMO

Tree species diversity and mycorrhizal associations play a central role for forest productivity, but factors driving positive biodiversity-productivity relationships remain poorly understood. In a biodiversity experiment manipulating tree diversity and mycorrhizal associations, we examined the roles of above- and belowground processes in modulating wood productivity in young temperate tree communities and potential underlying mechanisms. We found that tree species richness, but not mycorrhizal associations, increased forest productivity by enhancing aboveground structural complexity within communities. Structurally complex communities were almost twice as productive as structurally simple stands, particularly when light interception was high. We further demonstrate that overyielding was largely explained by positive net biodiversity effects on structural complexity with functional variation in shade tolerance and taxonomic diversity being key drivers of structural complexity in mixtures. Consideration of stand structural complexity appears to be a crucial element in predicting carbon sequestration in the early successional stages of mixed-species forests.


Assuntos
Florestas , Árvores , Biodiversidade , Madeira , Sequestro de Carbono
4.
Glob Chang Biol ; 29(6): 1437-1450, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36579623

RESUMO

Intensification of land use by humans has led to a homogenization of landscapes and decreasing resilience of ecosystems globally due to a loss of biodiversity, including the majority of forests. Biodiversity-ecosystem functioning (BEF) research has provided compelling evidence for a positive effect of biodiversity on ecosystem functions and services at the local (α-diversity) scale, but we largely lack empirical evidence on how the loss of between-patch ß-diversity affects biodiversity and multifunctionality at the landscape scale (γ-diversity). Here, we present a novel concept and experimental framework for elucidating BEF patterns at α-, ß-, and γ-scales in real landscapes at a forest management-relevant scale. We examine this framework using 22 temperate broadleaf production forests, dominated by Fagus sylvatica. In 11 of these forests, we manipulated the structure between forest patches by increasing variation in canopy cover and deadwood. We hypothesized that an increase in landscape heterogeneity would enhance the ß-diversity of different trophic levels, as well as the ß-functionality of various ecosystem functions. We will develop a new statistical framework for BEF studies extending across scales and incorporating biodiversity measures from taxonomic to functional to phylogenetic diversity using Hill numbers. We will further expand the Hill number concept to multifunctionality allowing the decomposition of γ-multifunctionality into α- and ß-components. Combining this analytic framework with our experimental data will allow us to test how an increase in between patch heterogeneity affects biodiversity and multifunctionality across spatial scales and trophic levels to help inform and improve forest resilience under climate change. Such an integrative concept for biodiversity and functionality, including spatial scales and multiple aspects of diversity and multifunctionality as well as physical and environmental structure in forests, will go far beyond the current widely applied approach in forestry to increase resilience of future forests through the manipulation of tree species composition.


Assuntos
Ecossistema , Florestas , Humanos , Filogenia , Biodiversidade , Agricultura Florestal
6.
Plant Cell Environ ; 45(3): 751-770, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34914117

RESUMO

Roots are the interface between the plant and the soil and play a central role in multiple ecosystem processes. With intensification of agricultural practices, rhizosphere processes are being disrupted and are causing degradation of the physical, chemical and biotic properties of soil. However, cover crops, a group of plants that provide ecosystem services, can be utilised during fallow periods or used as an intercrop to restore soil health. The effectiveness of ecosystem services provided by cover crops varies widely as very little breeding has occurred in these species. Improvement of ecosystem service performance is rarely considered as a breeding trait due to the complexities and challenges of belowground evaluation. Advancements in root phenotyping and genetic tools are critical in accelerating ecosystem service improvement in cover crops. In this study, we provide an overview of the range of belowground ecosystem services provided by cover crop roots: (1) soil structural remediation, (2) capture of soil resources and (3) maintenance of the rhizosphere and building of organic matter content. Based on the ecosystem services described, we outline current and promising phenotyping technologies and breeding strategies in cover crops that can enhance agricultural sustainability through improvement of root traits.


Assuntos
Produtos Agrícolas , Ecossistema , Agricultura , Produtos Agrícolas/metabolismo , Raízes de Plantas/metabolismo , Rizosfera , Solo/química
7.
Plant Direct ; 5(1): e00296, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33532689

RESUMO

BACKGROUND: Mineral phosphorus (P) fertilizers must be used wisely in order to preserve rock phosphate, a limited and non-renewable resource. The use of bio-inoculants to improve soil nutrient availability and trigger an efficient plant response to nutrient deficiency is one potential strategy in the attempt to decrease P inputs in agriculture. METHOD: An in vitro co-cultivation system was used to study the response of Brachypodium distachyon to contrasted P supplies (soluble and poorly soluble forms of P) and inoculation with P solubilizing bacteria. Brachypodium's responses to P conditions and inoculation with bacteria were studied in terms of developmental plasticity and P use efficiency. RESULTS: Brachypodium showed plasticity in its biomass allocation pattern in response to variable P conditions, specifically by prioritizing root development over shoot productivity under poorly soluble P conditions. Despite the ability of the bacteria to solubilize P, shoot productivity was depressed in plants inoculated with bacteria, although the root system development was maintained. The negative impact of bacteria on biomass production in Brachypodium might be attributed to inadequate C supply to bacteria, an increased competition for P between both organisms under P-limiting conditions, or an accumulation of toxic bacterial metabolites in our cultivation system. Both P and inoculation treatments impacted root system morphology. The modulation of Brachypodium's developmental response to P supplies by P solubilizing bacteria did not lead to improved P use efficiency. CONCLUSION: Our results support the hypothesis that plastic responses of Brachypodium cultivated under P-limited conditions are modulated by P solubilizing bacteria. The considered experimental context impacts plant-bacteria interactions. Choosing experimental conditions as close as possible to real ones is important in the selection of P solubilizing bacteria. Both persistent homology and allometric analyses proved to be useful tools that should be considered when studying the impact of bio-inoculants on plant development in response to varying nutritional context.

8.
Plant Cell Environ ; 44(4): 1215-1230, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33455010

RESUMO

Soil legacies play an important role for the creation of priority effects. However, we still poorly understand to what extent the metabolome found in the soil solution of a plant community is conditioned by its species composition and whether soil chemical legacies affect subsequent species during assembly. To test these hypotheses, we collected soil solutions from forb or grass communities and evaluated how the metabolome of these soil solutions affected the growth, biomass allocation and functional traits of a forb (Dianthus deltoides) and a grass species (Festuca rubra). Results showed that the metabolomes found in the soil solutions of forb and grass communities differed in composition and chemical diversity. While soil chemical legacies did not have any effect on F. rubra, root foraging by D. deltoides decreased when plants received the soil solution from a grass or a forb community. Structural equation modelling showed that reduced soil exploration by D. deltoides arose via either a root growth-dependent pathway (forb metabolome) or a root trait-dependent pathway (grass metabolome). Reduced root foraging was not connected to a decrease in total N uptake. Our findings reveal that soil chemical legacies can create belowground priority effects by affecting root foraging in later arriving plants.


Assuntos
Dianthus/fisiologia , Festuca/fisiologia , Raízes de Plantas/fisiologia , Solo , Biomassa , Dianthus/crescimento & desenvolvimento , Ecologia , Festuca/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Solo/química
9.
Front Plant Sci ; 11: 316, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296451

RESUMO

Three-dimensional models of root growth, architecture and function are becoming important tools that aid the design of agricultural management schemes and the selection of beneficial root traits. However, while benchmarking is common in many disciplines that use numerical models, such as natural and engineering sciences, functional-structural root architecture models have never been systematically compared. The following reasons might induce disagreement between the simulation results of different models: different representation of root growth, sink term of root water and solute uptake and representation of the rhizosphere. Presently, the extent of discrepancies is unknown, and a framework for quantitatively comparing functional-structural root architecture models is required. We propose, in a first step, to define benchmarking scenarios that test individual components of complex models: root architecture, water flow in soil and water flow in roots. While the latter two will focus mainly on comparing numerical aspects, the root architectural models have to be compared at a conceptual level as they generally differ in process representation. Therefore, defining common inputs that allow recreating reference root systems in all models will be a key challenge. In a second step, benchmarking scenarios for the coupled problems are defined. We expect that the results of step 1 will enable us to better interpret differences found in step 2. This benchmarking will result in a better understanding of the different models and contribute toward improving them. Improved models will allow us to simulate various scenarios with greater confidence and avoid bugs, numerical errors or conceptual misunderstandings. This work will set a standard for future model development.

10.
Oecologia ; 191(3): 657-671, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31578613

RESUMO

The exotic South African ragwort (Senecio inaequidens DC.) rapidly spread across Central Europe after its introduction, but we still do not know to what extent its timing of arrival in a plant community (i.e. before or after natives) and the composition of the native community being invaded affect (1) its capacity to invade a European grassland, (2) the performance of the native species, and (3) the direction and strength of priority effects. In a greenhouse experiment, we manipulated the timing of arrival of the exotic species (Senecio) and the composition of the native community to test the influence of these factors on the productivity and N content of exotic and native species. We also investigated if the plant species origin (native or exotic) and the native community composition affected the benefit of arriving early and the cost of arriving late in the community. The establishment success of Senecio strongly depended on its timing of arrival in a grassland community. Senecio benefited more from arriving early than did the natives. The presence of legumes in the community did not favour invasion by Senecio. When natives arrived later than Senecio, however, priority effects were weaker when legumes were part of the native community. Our results showed that inhibitory priority effects created by natives can lower the risk of invasion by Senecio. An early arrival of this species at a site with low native species abundance is a scenario that could favour invasion.


Assuntos
Fabaceae , Senécio , Ecossistema , Europa (Continente) , Pradaria , Espécies Introduzidas
11.
Sci Rep ; 8(1): 9784, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29955111

RESUMO

Some plants affect the development of neighbouring plants by releasing secondary metabolites into their environment. This phenomenon is known as allelopathy and is a potential tool for weed management within the framework of sustainable agriculture. While many studies have investigated the mode of action of various allelochemicals (molecules emitted by allelopathic plants), little attention has been paid to their initial contact with the plant plasma membrane (PPM). In this paper, this key step is explored for two alkaloids, gramine and hordenine, that are allelochemicals from barley. Using in vitro bioassays, we first showed that gramine has a greater toxicity than hordenine towards a weed commonly found in northern countries (Matricaria recutita L.). Then, isothermal titration calorimetry was used to show that these alkaloids spontaneously interact with lipid bilayers that mimic the PPM. The greater impact of gramine on the thermotropic behaviour of lipids compared to hordenine was established by means of infrared spectroscopy. Finally, the molecular mechanisms of these interactions were explored with molecular dynamics simulations. The good correlation between phytotoxicity and the ability to disturb lipid bilayers is discussed. In this study, biophysical tools were used for the first time to investigate the interactions of allelochemicals with artificial PPM.


Assuntos
Membrana Celular/metabolismo , Hordeum/metabolismo , Alcaloides Indólicos/metabolismo , Bicamadas Lipídicas/metabolismo , Feromônios/metabolismo , Tiramina/análogos & derivados , Ligação de Hidrogênio , Alcaloides Indólicos/química , Alcaloides Indólicos/toxicidade , Lipossomos , Simulação de Dinâmica Molecular , Transição de Fase , Feromônios/química , Feromônios/toxicidade , Fosfatidilcolinas/química , Testes de Toxicidade , Temperatura de Transição , Tiramina/química , Tiramina/metabolismo , Tiramina/toxicidade
12.
Oecologia ; 187(3): 825-837, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29748934

RESUMO

Climate change can impact forest ecosystem processes via individual tree and community responses. While the importance of land-use legacies in modulating these processes have been increasingly recognised, evidence of former land-use mediated climate-growth relationships remain rare. We analysed how differences in former land-use (i.e. forest continuity) affect the growth response of European beech to climate extremes. Here, using dendrochronological and fine root data, we show that ancient forests (forests with a long forest continuity) and recent forests (forests afforested on former farmland) clearly differ with regard to climate-growth relationships. We found that sensitivity to climatic extremes was lower for trees growing in ancient forests, as reflected by significantly lower growth reductions during adverse climatic conditions. Fine root morphology also differed significantly between the former land-use types: on average, trees with high specific root length (SRL) and specific root area (SRA) and low root tissue density (RTD) were associated with recent forests, whereas the opposite traits were characteristic of ancient forests. Moreover, we found that trees of ancient forests hold a larger fine root system than trees of recent forests. Our results demonstrate that land-use legacy-mediated modifications in the size and morphology of the fine root system act as a mechanism in regulating drought resistance of beech, emphasising the need to consider the 'ecological memory' of forests when assessing or predicting the sensitivity of forest ecosystems to global environmental change.


Assuntos
Fagus , Árvores , Mudança Climática , Ecossistema , Florestas
13.
F1000Res ; 7: 22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29636899

RESUMO

Quantifying plant morphology is a very challenging task that requires methods able to capture the geometry and topology of plant organs at various spatial scales. Recently, the use of persistent homology as a mathematical framework to quantify plant morphology has been successfully demonstrated for leaves, shoots, and root systems. In this paper, we present a new data analysis pipeline implemented in the R package archiDART to analyse root system architectures using persistent homology. In addition, we also show that both geometric and topological descriptors are necessary to accurately compare root systems and assess their natural complexity.

14.
Methods Mol Biol ; 1761: 3-22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29525945

RESUMO

In this chapter, we present methods that we routinely use to measure plant root traits in the field and under controlled environmental conditions (using rhizoboxes). We describe procedures to (1) collect, wash, and store root samples, (2) acquire images of washed root samples, and (3) measure root traits using image analysis. In addition, we also describe sampling methods for studying belowground productivity, soil exploration, and root distribution in the first soil layers at the community level (soil coring and ingrowth core method). Because the use of rhizoboxes allows a nondestructive and dynamic measurement of traits hardly accessible in the field, a section of this chapter is devoted to the acquisition and analysis of images of roots growing in rhizoboxes.


Assuntos
Desenvolvimento Vegetal , Raízes de Plantas/crescimento & desenvolvimento , Característica Quantitativa Herdável , Fenótipo , Solo
15.
Plant Physiol Biochem ; 104: 134-45, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27031425

RESUMO

In the context of chemical ecology, the analysis of the temporal production pattern of volatile organic compounds (VOCs) in root tissues and the emission rate measurement of root-emitted VOCs are of major importance for setting up experiments to study the implication of these compounds in biotic interactions. Such analyses, however, remain challenging because of the belowground location of plant root systems. In this context, this study describes the evolution of the root VOC production pattern of barley (Hordeum distichon L.) at five developmental stages from germination to the end of tillering and evaluates the emission of the identified VOCs in an artificial soil. VOCs produced by crushed root tissues and released by unexcavated root systems were analysed using dynamic sampling devices coupled to a gas chromatography-mass spectrometry methodology (synchronous SCAN/SIM). The results showed that, at each analysed developmental stage, crushed barley roots produced mainly four volatile aldehydes: hexanal; (E)-hex-2-enal; (E)-non-2-enal; and (E,Z)-nona-2,6-dienal. Higher total and individual VOC concentrations were measured in 3-day-old seminal roots compared with older phenological stages. For each developmental stage, the lipoxygenase (LOX) activity was greater for linoleic acid than α-linolenic acid and the greatest LOX activities using linoleic and α-linolenic acids as substrates were measured in 7- and 3-day-old roots, respectively. The analysis of VOCs released by barley roots into the soil showed that (E)-non-2-enal and (E,Z)-nona-2,6-dienal were the only VOCs emitted in quantifiable amounts by mechanically injured roots.


Assuntos
Aldeídos/metabolismo , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Raízes de Plantas/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Hordeum/enzimologia , Lipoxigenase/metabolismo , Padrões de Referência , Solo/química
16.
Front Plant Sci ; 7: 2008, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28119707

RESUMO

Diversity of species and order of arrival can have strong effects on ecosystem functioning and community composition, but these two have rarely been explicitly combined in experimental setups. We measured the effects of both species diversity and order of arrival on ecosystem function and community composition in a grassland field experiment, thus combining biodiversity and assembly approaches. We studied the effect of order of arrival of three plant functional groups (PFGs: grasses, legumes, and non-leguminous forbs) and of sowing low and high diversity seed mixtures (9 or 21 species) on species composition and aboveground biomass. The experiment was set up in two different soil types. Differences in PFG order of arrival affected the biomass, the number of species and community composition. As expected, we found higher aboveground biomass when sowing legumes before the other PFGs, but this effect was not continuous over time. We did not find a positive effect of sown diversity on aboveground biomass (even if it influenced species richness as expected). No interaction were found between the two studied factors. We found that sowing legumes first may be a good method for increasing productivity whilst maintaining diversity of central European grasslands, although the potential for long-lasting effects needs further study. In addition, the mechanisms behind the non-continuous priority effects we found need to be further researched, taking weather and plant-soil feedbacks into account.

17.
BMC Plant Biol ; 15: 195, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26264238

RESUMO

BACKGROUND: Plant growth-promoting rhizobacteria are increasingly being seen as a way of complementing conventional inputs in agricultural systems. The effects on their host plants are diverse and include volatile-mediated growth enhancement. This study sought to assess the effects of bacterial volatiles on the biomass production and root system architecture of the model grass Brachypodium distachyon (L.) Beauv. RESULTS: An in vitro experiment allowing plant-bacteria interaction throughout the gaseous phase without any physical contact was used to screen 19 bacterial strains for their growth-promotion ability over a 10-day co-cultivation period. Five groups of bacteria were defined and characterised based on their combined influence on biomass production and root system architecture. The observed effects ranged from unchanged to greatly increased biomass production coupled with increased root length and branching. Primary root length was increased only by the volatile compounds emitted by Enterobacter cloacae JM22 and Bacillus pumilus T4. Overall, the most significant results were obtained with Bacillus subtilis GB03, which induced an 81 % increase in total biomass, as well as enhancing total root length, total secondary root length and total adventitious root length by 88.5, 201.5 and 474.5 %, respectively. CONCLUSIONS: This study is the first report on bacterial volatile-mediated growth promotion of a grass plant. Contrasting modulations of biomass production coupled with changes in root system architecture were observed. Most of the strains that increased total plant biomass also modulated adventitious root growth. Under our screening conditions, total biomass production was strongly correlated with the length and branching of the root system components, except for primary root length. An analysis of the emission kinetics of the bacterial volatile compounds is being undertaken and should lead to the identification of the compounds responsible for the observed growth-promotion effects. Within the context of the inherent characteristics of our in vitro system, this paper identifies the next critical experimental steps and discusses them from both a fundamental and an applied perspective.


Assuntos
Bactérias/metabolismo , Biomassa , Brachypodium/anatomia & histologia , Brachypodium/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/metabolismo , Brachypodium/microbiologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rizosfera
18.
Plant Signal Behav ; 9(11): e973816, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482777

RESUMO

The effect of combined abiotic and biotic factors on plant volatile organic compound (VOC) emissions is poorly understood. This study evaluated the VOC emissions produced by Arabidopsis thaliana (L.) Col-0 subjected to 3 temperature regimes (17, 22, and 27°C) in the presence and absence of Plutella xylostella larvae over 2 time intervals (0-4 and 4-8 h), in comparison to control plants. The analyses of VOCs emitted by Arabidopsis plants were made by headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). It was found that certain volatile groups (e.g., alcohols, ketones, aldehydes, and terpenes) are induced by both single factors (temperature or larval infestation) and combined factors (temperature and larvae interactions), whereas other volatile groups (e.g., isothiocyanates [ITCs] and nitrile) were specific to the experimental conditions. ITCs (mainly 4-methylpentyl isothiocyanate) were emitted from plants subjected to larval infestation at 17 and 27°C after the 2 time intervals. The proportions of sulfides (mainly dimethyl disulfide) and 4-(methylthio) butanenitrile were significantly higher on herbivore-infested plants at 22°C compared to the other treatments. Overall, our findings indicate that changes in all experimental conditions caused significant changes to the VOC emissions of Arabidopsis plants. Therefore, the interaction between temperature and larval feeding may represent an important factor determining the variability of volatile emissions by plants subjected to multiple simultaneous factors.


Assuntos
Arabidopsis/química , Mariposas/fisiologia , Doenças das Plantas/parasitologia , Temperatura , Compostos Orgânicos Voláteis/análise , Animais , Análise por Conglomerados , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...